Activation of the NGF/TrkA signaling pathway attenuates diabetic erectile dysfunction

نویسندگان

  • Yi Hou
  • Linpei Jia
  • Ying Zhang
  • Wei Ji
  • Hai Li
چکیده

Erectile dysfunction (ED) is a common complication of diabetes mellitus (DM). The exact role of the NGF/TrkA signaling pathway in the pathogenesis of diabetic ED is largely unknown. In the present study, we investigated the role of the NGF/TrkA signaling pathway in Sprague-Dawley rats with diabetic ED. Animals were divided into 2 groups: the normal group and the DM ED model group. The model group included the blank subgroup, the negative control (NC) subgroup, the TrkA subgroup and the TrkA + NGF subgroup. Erectile function, intracavernous pressure (ICP) and mean arterial pressure were measured respectively. Immunohistochemistry was used to examine the number of neuronal nitric oxide synthase (nNOS) expressing nerve fibers. The quantitative real-time polymerase chain reaction was applied to detect the mRNA expressions of NGF and TrkA in the cavernous tissue. Further, Western blotting was conducted to detect the expressions of NGF, TrkA and its downstream ERK pathway-related proteins. Higher erectile frequency, ICP values and diastolic function, more nNOS-positive nerve fibers, and decreased systolic function of the corpus cavernosum smooth muscle were found in the TrkA and TrkA+NGF groups when compared with the blank and the NC groups. Moreover, significantly higher mRNA expressions of NGF and TrkA, and upregulated protein expressions of NGF, TrkA, c-raf, ERK1/2 and CREB1 were found in the TrkA and the TrkA + NGF groups. In conclusion, downregulation in the NGF/TrkA signaling pathway may contribute to the pathogenesis of diabetic ED.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel apoptotic pathway induced by nerve growth factor-mediated TrkA activation in medulloblastoma.

Nerve growth factor (NGF) induces apoptosis in a human medulloblastoma cell line (MED283) engineered to express TrkA (MED283-TrkA) (Muragaki, Y., Chou, T. T., Kaplan, D. R., Trojanowski, J. Q., and Lee, V. M. (1997) J. Neurosci. 17, 530-542). To dissect the molecular signaling pathway that mediates this novel effect, specific receptor mutations in Trk have been employed. We showed that phosphor...

متن کامل

TrkA cross-linking mimics neuronal responses to nerve growth factor.

TrkA, a tyrosine kinase receptor, is an essential component of the nerve growth factor (NGF) response pathway. The binding of NGF to the receptor induces receptor autophosphorylation and activation of intracellular signaling pathways, resulting in diverse biological effects. We prepared polyclonal antibodies against the entire extracellular domain of rat trkA produced using a baculovirus expres...

متن کامل

In vitro and in vivo study of effects of fermented soybean product (chungkookjang) on NGF secretion ability and NGF receptor signaling pathway

In order to investigate the effects of a fermented soybean product (Chungkookjang, CKJ) on nerve growth factor (NGF) metabolism, NGF secretion ability and its related signaling pathway were analyzed in B35 neuronal cells and the Tg2576 mouse model of Alzheimer's disease (AD). In B35 cells, the concentration of NGF significantly increased upon treatment with Taegwang (TG)-CKJ and Shinhwa (SH)-CK...

متن کامل

Endophilin B1 as a novel regulator of nerve growth factor/ TrkA trafficking and neurite outgrowth.

Neurotrophins and their cognate receptors Trks are important regulators of neuronal survival and differentiation. Recent studies reveal that internalization and trafficking of Trks play a critical role in neurotrophin-mediated signaling. At present, little is known of the molecular events that mediate this process. In the current study, we show that endophilin B1 is a novel regulator of nerve g...

متن کامل

TrkA gene ablation in basal forebrain results in dysfunction of the cholinergic circuitry.

Dysfunction of basal forebrain cholinergic neurons (BFCNs) is an early pathological hallmark of Alzheimer's disease (AD). Numerous studies have indicated that nerve growth factor (NGF) supports survival and phenotypic differentiation of BFCNs. Consistent with a potential link to AD pathogenesis, TrkA, a NGF receptor, is expressed in cholinergic forebrain neuronal populations including those in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017